Introduction

Vernier caliper measurements are commonly used to monitor tumor growth during pre-clinical oncology studies in mice. In this method, width and length are measured and a tumor volume formula is used to calculate the tumor volume. Usually, changes in tumor height are not taken into consideration. The following document will compare and reference such caliper measurements to an innovative direct 3D method in which an advanced optical method of 3D imaging is used to image the tumors and monitor tumor volume growth. The TM900, previously from Peira, since 2023 incorporated in Budetec, is such an instrument. We are also evaluating how both methods compared to the actual tumor volume.

Materials and Methods

For this evaluation three different comparison tests were done;

1. Plasticine tumor simulations: Using plasticine, a sphere, boll, was created by hand. Its diameter was measured by a vernier caliper, and its volume calculated. From this amount, different, randomly molded, by hand, tumor shapes were created. The volumes of these shapes were measured by the Budetec TM900v2, the newer version of the instrument. The TM900v2 also determines tumor width and length, so a virtual caliper measurement. The volume was also calculated by inputting those in the tumor volume formula. This was done for a small, medium and big volume.
2. Subcutaneous and extracted tumor: From 3 mice with different stages of tumor growth, small, medium and big, tumor sizes were measured using the Piera TM900. Also here, using the TM900 output tumor widths and lengths, so a virtual caliper measurement, the volume was also calculated by using the tumor volume formula. The tumors were then extracted, and the separated tumor was measured by the TM900.
3. During a study, formula calculations vs TM900v2: For 4 animals during a study, the volume was monitored by the TM900v2. The growth evolution is then compared to what is generated by the tumor volume formula.

"Mushroom" effect in 3D scanner measurements on spherical shapes

The tumor volume measurement series, Tm900, uses an advanced stereo vision and 3D reconstruction algorithm. For spherical objects and their volume calculation, one must take into consideration the "mushroom" effect, as explained in this image.

Areas not visible for both cameras will not be reconstructed.

For a spherical volume, a stereo vision 3D method will overestimate the real volume.
$\mathrm{V}_{\text {true }}<\mathrm{V}_{\text {measured }}$

Volume added by scanner

The reconstructed surface will have a reconstructed artefact, as the camera system can not see "under" the tumor.

Not all areas are visible for both cameras

Plasticine tumor simulations

"Mushroom" effect in 3D scanner measurements on molded spheres

This image of a sphere shows how it is reconstructed by the scanner

The volume generated by the scanner will be an over estimation of the real volume calculated. $4 \pi r^{3} / 3=V_{\text {real }}<\mathrm{V}_{\text {TM900 scanner }}$

TM900v2 and caliper measurement, diameter sphere:

Three spheres, of sizes small, medium and big, were molded by hand. The diameter was measured by a vernier caller. A TM900 measurement will result in a volume, area, height, length and with of the region of interest, ROI, the white area in the right 3D reconstruction. Like in image:

The height of the TM900v2 measured ROI should be close or the same as the diameter of the boll measured by caliper. Due to the mushroom effect, the width and length of the ROI will be oversized.

Due to the molding by hand the sphere will not be mathematically perfect. All measurements are good approximations, estimation, of real sizes and volumes.

In this experiment, 5 different values for the volumes of the different plasticine amounts were measured or calculated and are mapped in the next three slides:

Sphere TM9002v	gives the volume output by the TM900v2 of the ROI, so including the reconstruction artefact
Spere Fomula Calculation	Is the volume calculated by the tumor volume formula $v=0,5^{*} w^{*} w^{*}$ I, using width and length from the TM900v2 ROI, so a virtual caliper measurement
random shape TM900v2	Is the volume from the ROI of the molded tumor. As the amount of puddy is the same, these should correspond to the real sphere volume.
random shape Formula Calc.	Is the volume generated by the TM900v2 of the randomly shaped tumor like volume, , using width and length from the TM900v2 ROI, so a virtual caliper measurement. This volume should be close or similar to the real volume.
Estimation	Is the refference volume, close to the real volume, based on diameter measurement by caliper of the sphere and the formula of a boll, 4 $\pi r^{3} / 3$.

Plasticine tumor simulations

Sphere TM9002v	$2050 \mathrm{~mm}^{3}$	
Spere Fomula Calculation	$3387 \mathrm{~mm}^{3}$	
random shape TM900v2	$1502 \mathrm{~mm}^{3}$	
random shape Formula Calc.	$6048 \mathrm{~mm}^{3}$	
Estimation	$1595 \mathrm{~mm}^{3}$	base on diameter measurement sphere

The real volume of the plasticine amount, labeled as "estimation", is calculated and used as reference for the real volume/amount.

These results show that the volumes, Sphere formula calculation and random shape formula calculation, calculated by the tumor volume formula with the width and length are significant overestimations.

The TM900v2 measurements closely match the real volume. As expected, the TM900 measurement of the spere, Sphere TM900v2, is higher than the real volume estimation. The randomly shaped tumor expression like shapes, random shape TM900v2, are closely matching the real volume.

Description of the experiment:

For three animals with tumors at different stages of growth, of different sizes, small, medium and big, TM900 measurements were done of the subcutaneous tumor in the animal. The measurement was done three times, by three different operators. This induced the operator and animal manipulation variability in the measurement.
After the TM900 measurement, the animals were sacrificed, and the tumors extracted. The then separated tumors were put on a paper tissue and measured by the TM900. These measurements were also done multiple times, with different orientation of the measurement instrument over the tumor.

With the width and length from the TM900 measurement, the volume was calculated using two of the most commonly used tumor volume formulas. These results are simulation of- and used as caliper measurements for comparison of the data.
Following slides present the data and comparison.

Subcutaneous and extracted tumor

During the first two measurements, due to its size, the tumor was not positioned correctly, it partially was outside the imaged area.

The "mushroom" effect is visible, the volume of the spherical shaped tumor oversized.
Conclusion: The real volume for this tumor $\bigvee_{\text {tumor }}<1240 \mathrm{~mm}^{3}$.

Big Tumor					
6000					
5000					
4000					
3000					
2000					
1000					
0					
\square TM900 tumor in mouse \square tumor in mouse $I^{*} w^{*} w / 2 \quad \square$ tumor in mouse $\pi^{+} \\|^{*} w^{*} w / 6$$\square$ TM900 extracted tumor $\quad \square$ extracted tumor $\\|^{*} w^{*} w / 2 \quad \square$ extracted tumor $\left.\pi^{*}\right\|^{*} w^{*} w / 6$					

The "mushroom" effect is visible, the volume of the spherical shaped tumor oversized.
Conclusion; The real volume for this tumor $\mathrm{V}_{\text {tumor }}<615 \mathrm{~mm}^{3}$.

| 2500 |
| :--- | :--- | :--- | :--- |

Subcutaneous and extracted tumor

Variability in measurement is due to different expression of the tumor from under the skin. Animal manipulation, skin stretching can cause this.

Subcutaneous and extracted tumor

The same small tumor, extracted	

The "mushroom" effect is visible, the volume of the spherical shaped tumor oversized.
Conclusion; The real volume for this tumor is $<70 \mathrm{~mm}^{3}$.

small Tumor		
400		
350		
300		
250	$\stackrel{8}{8}$	
200	\pm	
150		
100	ד $\quad=$	
50		
。		
	\square TM900 tumor in mouse \square tumor in mouse $I^{*} w^{*} w / 2 \quad \square$ tumor in mouse $\pi^{*} \\|^{*} W^{*} w / 6$ \square TM900 extracted tumor $\quad \square$ extracted tumor $I^{+} w^{*} w / 2 \quad \square$ extracted tumor $\left.\pi^{*}\right\|^{*} w^{*} w / 6$	

During a study, formula calculations vs TM900v2

Description of the experiment:

In this test, 4 animals were monitored with the TM900v2. During a three weeks study. The volume data from the scanner were plotted against the volume that is calculated using the tumor volume formula. For this the width and length data obtained by the TM900v2 were used in the calculations. So not physical caliper measurements were done.

Following slides provide the actual data and graphical comparisons.

animal tag	Day	volume TM900v2	height	width	length	Fomula $\mathbf{v = 0 , 5} \mathbf{w w}^{*} \mathbf{w}^{*}$
001	1	11,8955	1,23797	5,12998	5,95842	78,40296032
001	3	37,9025	2,00233	6,95247	7,05323	170,4654218
001	6	105,625	2,76063	8,78698	10,1839	393,1546407
001	10	117,767	2,61857	10,4124	10,9206	591,9952082
001	14	1209,13	8,63797	16,6013	17,6014	2425,500745
001	17	2254,42	10,1195	21,9406	23,8065	5730,104665
001	19	2611,46	10,2099	22,926	24,9152	6547,732947

anima tag	Day	volume TM900v2	height	width	length	Fomula $\mathbf{v = 0 , 5} \mathbf{w}^{*} \mathbf{w}^{*} \mathbf{I}$
002	1	21,4937	0,925171	6,54943	9,37072	200,9786733
002	3	21,2834	1,34826	6,92326	7,82946	187,6389946
002	6	37,625	2,13569	6,95124	8,07839	195,1728423
002	10	139,502	3,27104	9,24843	11,8628	507,3331496
002	14	598,004	6,81092	13,2556	16,6128	1459,52528
002	17	665,07	5,76822	13,8192	18,0696	1725,378364
002	19	1103,49	7,27666	15,3424	21,4667	2526,515075

animal tag	Day	volume TM900v2	height	width	length	Fomula $\mathbf{v = 0 , 5} \mathbf{w}^{*} \mathbf{w}^{*} \mathbf{I}$
003	1	30,2114	1,56264	8,1312	8,52097	281,6879877
003	3	79,5195	2,64894	8,70998	10,015	379,8877361
003	6	171,321	3,61672	9,392	12,3853	546,2515758
003	10	510,803	5,73113	12,6428	16,9417	1353,983983
003	14	1714,68	9,32497	19,5003	19,7759	3760,008677
003	17	3440,53	12,9866	22,9505	26,1813	6895,178515
003	19	5088,17	13,5092	28,4013	28,8911	11652,26949

animal tag	Day	volume TM900v2	height	width	length	Fomula $\mathbf{v = 0 , 5} \mathbf{w}^{*} \mathbf{w}^{*} \mathbf{I}$
004	1	20,7961	1,22257	5,7467	8,92819	147,4247771
004	3	66,1518	2,62039	7,62072	9,76551	283,5678194
004	6	192,396	4,18853	10,076	11,5874	588,2098884
004	10	245,611	3,99969	10,9008	14,4011	855,6229277
004	14	352,197	5,3635	15,2012	16,4013	1894,977348
004	17	2598,89	10,7067	22,8917	23,7931	6234,148251
004	19	4816,91	15,8398	27,1438	27,5851	10162,15607

During a study, formula calculations vs TM900v2

The graphs show that both methods generally do represent the same evolution in tumor volume changes. The lack in of height information in caliper measurements can affect the individual tumor data, the overall trend is similar.

Conclusions:

- Caliper measurements and tumor volume formulas highly overestimate the volume. TheTM900v2 volume measurements are significantly more accurate.
- TM900v2 measurements have a better match with real tumor volumes. The volume are a realistic upper limit on the real tumor volume: $\mathrm{V}_{\text {real }}<\mathrm{V}_{\text {TM900v2 scanner }}$
- The standard deviation during a study for TM900v2 measurements is significantly less than with caliper measurements:
- Caliper measurements lack tumor height changes, only width and length variations will affect the volumes calculated.
- During caliper measurements, differences in measured width and length will significantly influence the volume calculated.

The effect of inaccuracies, in caliper measurement-based tumor volume monitoring, due to height and with variability and the lack of height information is shown on: https://tumorvolume.com/peira-tm900-caliper-measuremet/

For more information:

https://tumorvolume.com/contact/
https://budetec.be/contact/

